Configuration Poisson Groupoids of Flags

نویسندگان

چکیده

Abstract Let $G$ be a connected complex semi-simple Lie group and ${\mathcal {B}}$ its flag variety. For every positive integer $n$, we introduce Poisson groupoid over ${{\mathcal {B}}}^n$, called the $n$th total configuration of flags $G$, which contains family sub-groupoids whose spaces are generalized double Bruhat cells bases Schubert in {B}}^n$. Certain symplectic leaves these then shown to groupoids cells. We also give explicit descriptions three series varieties associated $G$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holomorphic Poisson Structures and Groupoids

We study holomorphic Poisson manifolds, holomorphic Lie algebroids and holomorphic Lie groupoids from the viewpoint of real Poisson geometry. We give a characterization of holomorphic Poisson structures in terms of the Poisson Nijenhuis structures of Magri-Morosi and describe a double complex which computes the holomorphic Poisson cohomology. A holomorphic Lie algebroid structure on a vector bu...

متن کامل

Symplectic Groupoids and Poisson Manifolds

0. Introduction. A symplectic groupoid is a manifold T with a partially defined multiplication (satisfying certain axioms) and a compatible symplectic structure. The identity elements in T turn out to form a Poisson manifold To? and the correspondence between symplectic groupoids and Poisson manifolds is a natural extension of the one between Lie groups and Lie algebras. As with Lie groups, und...

متن کامل

Deformation Quantization of Pseudo Symplectic(Poisson) Groupoids

We introduce a new kind of groupoid—a pseudo étale groupoid, which provides many interesting examples of noncommutative Poisson algebras as defined by Block, Getzler, and Xu. Following the idea that symplectic and Poisson geometries are the semiclassical limits of the corresponding quantum geometries, we quantize these noncommutative Poisson manifolds in the framework of deformation quantizatio...

متن کامل

Groupoids and Poisson Sigma Models with Boundary

This note gives an overview on the construction of symplectic groupoids as reduced phase spaces of Poisson sigma models and its generalization in the infinite dimensional setting (before reduction).

متن کامل

Poisson Sigma Models and Symplectic Groupoids

We consider the Poisson sigma model associated to a Poisson manifold. The perturbative quantization of this model yields the Kontsevich star product formula. We study here the classical model in the Hamiltonian formalism. The phase space is the space of leaves of a Hamiltonian foliation and has a natural groupoid structure. If it is a manifold then it is a symplectic groupoid for the given Pois...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2022

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnac321